99 research outputs found

    Advances in functional neuroanatomy: a review of combined DTI and fMRI studies in healthy younger and older adults.

    Get PDF
    Structural connections between brain regions are thought to influence neural processing within those regions. It follows that alterations to the quality of structural connections should influence the magnitude of neural activity. The quality of structural connections may also be expected to differentially influence activity in directly versus indirectly connected brain regions. To test these predictions, we reviewed studies that combined diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) in younger and older adults. By surveying studies that examined relationships between DTI measures of white matter integrity and fMRI measures of neural activity, we identified variables that accounted for variability in these relationships. Results revealed that relationships between white matter integrity and neural activity varied with (1) aging (i.e., positive and negative DTI-fMRI relationships in younger and older adults, respectively) and (2) spatial proximity of the neural measures (i.e., positive and negative DTI-fMRI relationships when neural measures were extracted from adjacent and non-adjacent brain regions, respectively). Together, the studies reviewed here provided support for both of our predictions

    Mnemonic discrimination relates to perforant path integrity: An ultra-high resolution diffusion tensor imaging study.

    Get PDF
    Pattern separation describes the orthogonalization of similar inputs into unique, non-overlapping representations. This computational process is thought to serve memory by reducing interference and to be mediated by the dentate gyrus of the hippocampus. Using ultra-high in-plane resolution diffusion tensor imaging (hrDTI) in older adults, we previously demonstrated that integrity of the perforant path, which provides input to the dentate gyrus from entorhinal cortex, was associated with mnemonic discrimination, a behavioral outcome designed to load on pattern separation. The current hrDTI study assessed the specificity of this perforant path integrity-mnemonic discrimination relationship relative to other cognitive constructs (identified using a factor analysis) and white matter tracts (hippocampal cingulum, fornix, corpus callosum) in 112 healthy adults (20-87 years). Results revealed age-related declines in integrity of the perforant path and other medial temporal lobe (MTL) tracts (hippocampal cingulum, fornix). Controlling for global effects of brain aging, perforant path integrity related only to the factor that captured mnemonic discrimination performance. Comparable integrity-mnemonic discrimination relationships were also observed for the hippocampal cingulum and fornix. Thus, whereas perforant path integrity specifically relates to mnemonic discrimination, mnemonic discrimination may be mediated by a broader MTL network

    Limbic Tract Integrity Contributes to Pattern Separation Performance Across the Lifespan.

    Get PDF
    Accurate memory for discrete events is thought to rely on pattern separation to orthogonalize the representations of similar events. Previously, we reported that a behavioral index of pattern separation was correlated with activity in the hippocampus (dentate gyrus, CA3) and with integrity of the perforant path, which provides input to the hippocampus. If the hippocampus operates as part of a broader neural network, however, pattern separation would likely also relate to integrity of limbic tracts (fornix, cingulum bundle, and uncinate fasciculus) that connect the hippocampus to distributed brain regions. In this study, healthy adults (20-89 years) underwent diffusion tensor imaging and completed the Behavioral Pattern Separation Task-Object Version (BPS-O) and Rey Auditory Verbal Learning Test (RAVLT). After controlling for global effects of brain aging, exploratory skeleton-wise and targeted tractography analyses revealed that fornix integrity (fractional anisotropy, mean diffusivity, and radial diffusivity; but not mode) was significantly related to pattern separation (measured using BPS-O and RAVLT tasks), but not to recognition memory. These data suggest that hippocampal disconnection, via individual- and age-related differences in limbic tract integrity, contributes to pattern separation performance. Extending our earlier work, these results also support the notion that pattern separation relies on broad neural networks interconnecting the hippocampus

    Characterization of age-related microstructural changes in locus coeruleus and substantia nigra pars compacta.

    Get PDF
    Locus coeruleus (LC) and substantia nigra pars compacta (SNpc) degrade with normal aging, but not much is known regarding how these changes manifest in MRI images, or whether these markers predict aspects of cognition. Here, we use high-resolution diffusion-weighted MRI to investigate microstructural and compositional changes in LC and SNpc in young and older adult cohorts, as well as their relationship with cognition. In LC, the older cohort exhibited a significant reduction in mean and radial diffusivity, but a significant increase in fractional anisotropy compared with the young cohort. We observed a significant correlation between the decrease in LC mean, axial, and radial diffusivities and measures examining cognition (Rey Auditory Verbal Learning Test delayed recall) in the older adult cohort. This observation suggests that LC is involved in retaining cognitive abilities. In addition, we observed that iron deposition in SNpc occurs early in life and continues during normal aging

    Visual Acuity does not Moderate Effect Sizes of Higher-Level Cognitive Tasks.

    Get PDF
    Background/study contextDeclining visual capacities in older adults have been posited as a driving force behind adult age differences in higher-order cognitive functions (e.g., the "common cause" hypothesis of Lindenberger & Baltes, 1994, Psychology and Aging, 9, 339-355). McGowan, Patterson, and Jordan (2013, Experimental Aging Research, 39, 70-79) also found that a surprisingly large number of published cognitive aging studies failed to include adequate measures of visual acuity. However, a recent meta-analysis of three studies (La Fleur and Salthouse, 2014, Psychonomic Bulletin & Review, 21, 1202-1208) failed to find evidence that visual acuity moderated or mediated age differences in higher-level cognitive processes. In order to provide a more extensive test of whether visual acuity moderates age differences in higher-level cognitive processes, we conducted a more extensive meta-analysis of topic.MethodsUsing results from 456 studies, we calculated effect sizes for the main effect of age across four cognitive domains (attention, executive function, memory, and perception/language) separately for five levels of visual acuity criteria (no criteria, undisclosed criteria, self-reported acuity, 20/80-20/31, and 20/30 or better).ResultsAs expected, age had a significant effect on each cognitive domain. However, these age effects did not further differ as a function of visual acuity criteria.ConclusionThe current meta-analytic, cross-sectional results suggest that visual acuity is not significantly related to age group differences in higher-level cognitive performance-thereby replicating La Fleur and Salthouse (2014). Further efforts are needed to determine whether other measures of visual functioning (e.g., contrast sensitivity, luminance) affect age differences in cognitive functioning

    Central Executive Dysfunction and Deferred Prefrontal Processing in Veterans with Gulf War Illness.

    Get PDF
    Gulf War Illness is associated with toxic exposure to cholinergic disruptive chemicals. The cholinergic system has been shown to mediate the central executive of working memory (WM). The current work proposes that impairment of the cholinergic system in Gulf War Illness patients (GWIPs) leads to behavioral and neural deficits of the central executive of WM. A large sample of GWIPs and matched controls (MCs) underwent functional magnetic resonance imaging during a varied-load working memory task. Compared to MCs, GWIPs showed a greater decline in performance as WM-demand increased. Functional imaging suggested that GWIPs evinced separate processing strategies, deferring prefrontal cortex activity from encoding to retrieval for high demand conditions. Greater activity during high-demand encoding predicted greater WM performance. Behavioral data suggest that WM executive strategies are impaired in GWIPs. Functional data further support this hypothesis and suggest that GWIPs utilize less effective strategies during high-demand WM
    corecore